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TRACK INITIALIZATION SENSITIVITY IN CLUTTER 

1. INTRODUCTION 

Track initialization error is quantified as a function of clutter density for the nearest neighbor 
assignment function (NNAF). Quality of track initialization is thereby related to assignment 
accuracy. Two statistical distributions of total track initialization error are derived under idealized 
hypotheses representing excellent and poor performance of the NNAF in clutter. A track 
initialization sensitivity region is obtained by constraining the mean initialization error under the 
excellent NNAF performance hypothesis to have (lower tail) significance level at most a under 
the poor NNAF performance hypothesis. The initialization error region is derived for general 
nonlinear state equations and for measurement equations with additive Gaussian noise; the 
initialization error region is not conditioned on particular measurement sets, but it is a function of 
clutter density and the number of scans in the track initialization. As the number of scans in the 
initialization increases, examples show that sensitivity to errors in initial velocity increases linearly 
compared with sensitivity to positional errors when constant velocity models hold. 

There exists a critical clutter density at which the initialization error region is the empty set. 
One interpretation of this result is that even perfect track initialization is a poor initialization in 
clutter whose density exceeds critical density. The critical clutter density, normalized by the 
determinant of the additive measurement noise process, depends only on the dimension of the 
measurement vector; moreover, it is independent of the state and measurement process models. 
An explicit expression for the critical clutter density is derived. 

The methodology is used to define a family of curves called initialization clutter envelop 
(ICE) curves. ICE curves plot maximum clutter density against maximum initialization error, and 
they are useful for estimating the maximum clutter density at which successful tracking can occur 
for a given initialization error. Further details are discussed in section 2. 

In practice, measurement assignment functions may use a variety of application-specific 
"clues" to enhance performance and reduce track estimation error. The problem studied here is 
restricted to assignment functions that are strictly kinematical. Thus, only the initial target track 
and the target measurement process are known to the NNAF. Performance limits for the 
kinematic problem are insightful and useful in themselves, and they facilitate quantitative analysis 
of the utility of additional clues to the tracking process. 
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2. INITIALIZATION SENSITIVITY REGION 

Precisely one target is assumed present, and an initial track estimate is given. Multiple 
measurements from a sensor at T > 1 successive independent scans are available for re-estimating 
the target track. The probability of detecting the target at each scan is one, so precisely one 
measurement comes from the target in each scan. Measurements not originating from the target 
are termed clutter. An automated assignment function selects the measurement corresponding to 
the target from among the available measurements at each scan. The measurement assigned to 
the target is presented to the tracking algorithm, and a new estimate of target track is computed. 

The assignment function considered here is the NNAF. The NNAF is given a set of 
(unlabeled) measurements comprising both target and clutter, and the measurement closest to the 
expected measurement, conditioned on the initial track, is assigned to the target at each scan. The 
NNAF has the opportunity to commit errors, that is, to select a clutter measurement as the target 
measurement. An explicit mathematical definition of the NNAF in terms of measurements and 
initial target track is postponed momentarily (see equation (1)). 

A null hypothesis is used to model poor track initialization. The target is always present, by 
definition, so the null hypothesis cannot be a traditional target absent condition. The null must 
pertain to the initial track estimate and the strictly kinematic information used by the assignment 
function. Intuitively, the worst track initializations are so remote from the target track at every 
scan that the presence of any amount of clutter makes the assignment function fail to select the 
correct measurement with probability very nearly one. Idealizing this situation leads to the 
following null hypothesis for poor track initialization: 

"Tf : The NNAF never assigns the correct measurement to the target track; that is, track 
initialization is such that, at each scan, the measurement assigned to target is a clutter 
point. 

Clutter-induced track estimation error is the only source of estimation error under the null 
hypothesis fl<  Intuitively, the likelihood of the NNAF failing completely, as stipulated in 
hypothesis If. diminishes with decreasing clutter density. 

An alternative hypothesis is used to model good track initialization. A simple model is that 
track initialization is so good that the assignment function is nearly always correct at any clutter 
density. Idealizing this situation leads to the following alternative hypothesis: 

X. The NNAF is error free; that is, track initialization is such that, at each scan, the 
measurement assigned to the target is the correct measurement. 

Target measurement error is the only source of track estimation error under hypothesis X. 
Intuitively, the likelihood that the NNAF never makes a wrong assignment, as required by 
hypothesis X, diminishes with increasing clutter density. 



The statistic of interest under ^ and X is a normalized innovation statistic, denoted S, which 
measures the total squared error (relative to the measurement covariance) of the given track 
initialization. In sufficiently heavy clutter, the assignment functions modeled by & and X are 
difficult to distinguish using the statistic S. When clutter reaches a certain critical density, the 
nearest neighbor measurement and the target measurement are, on average, equally close to the 
expected measurement (conditioned on the initial track). Consequently, in clutter of density 
greater than or equal to critical density, the target track is lost against 'the noisy background 
despite the assumption that a target is present. Equating the means of the probability density 
functions (PDFs) of Sunder^ and ogives a fundamental equation relating the clutter density to 
track initialization and provides a convenient definition of a critical clutter density (see section 3). 

Standard approximations to the PDFs of S under # and X are derived and used in this report. 
These approximations are exact under the following modified hypotheses: 

^f': The NNAF is given only clutter data, i.e., target is absent. 
X': The NNAF is given only target data, i.e., clutter is absent. 

The modified hypotheses are appropriate for detecting target absence or presence. They are 
adequate approximations for the purposes of studying track initialization sensitivity. Moreover, 
they provide significant insight into the problem. For these reasons, the hypotheses &' and X' 
are studied in this report. Numerical investigation of track initialization under hypotheses"% and X 
will be the subject of a later study. 

Distributions for the statistic S under &' and X' differ from those under 1? and X, a fact that 
went completely unnoticed in the literature until pointed out in a recent paper by Li.1 Under 
hypotheses W and X, the input to the NNAF comprises unlabeled target and clutter measurements, 
yet the NNAF does not happen to select incorrect measurements, namely, the target measurement 
under 1¥ and a clutter measurement under X. Given the opportunity to commit error, hypotheses 
"% and X state that no errors occurred. In contrast, under hypotheses #' and X', the NNAF 
cannot select incorrect measurements because the inputs to the NNAF are censored: the target 
measurement is absent under ^f' and clutter measurements are absent under X'. 

A track error sensitivity region, denoted by 1R'{a), is defined by setting a significance level a 

for rejecting W' and requiring the mean of the statistic S under X' to be significant at this level, 
i.e., the mean of S under X' lies on the lower tail of S under W' at the point of significance a. 
The defining inequality of the initialization region J?'(a) is derived in this section, as well as 

receiver operating characteristic (ROC) curves under hypotheses^' and X'. 

A sensor measurement is a vector of m > 1 real-valued components; that is, each sensor 
measurement is a point in Rm. The normalized distance between two measurements, say z and w, 
is defined by 



1 

d(z,w) = ((z-w)'R-\z-w))2, (1) 

where, throughout this report, R is the covariance matrix of additive Gaussian measurement noise 
(see equation (8)). The normalized distance (equation (1)) is used by the NNAF. The sensor's 
field of view is assumed to comprise all of Rm, a simplifying idealization. Clutter is modeled as 

uniform Poisson (point) clutter over Rm with normalized density parameter A\R\2, where \R\ is 
the determinant of R. The normalized density is dimensionless; this is a practical advantage for 
application comparisons. A theoretical justification for the normalized density is as follows: let 
R = LL', where L is the Cholesky factor of R. Then the transformation z = Ly transforms the 

normalized distance (equation (1)) into the usual Euclidean distance in Rm and, simultaneously, 
2 

transforms the Poisson clutter process into another Poisson process with density A\R\2\L~]\= A. 
That the density parameter transforms in this way is an immediate consequence of the Mapping 
Theorem for Poisson processes (see Kingman, section 2.3).2 

Let Om{r) denote a normalized sphere in Rm with radius r and centered at any fixed point, 

say the origin, that is, 

Um(r) = {zGRm:d(z,0)<r}. 

The volume of Qm {f) is3 

.«- 
n1 \R\2r" 

r(f+i) 
= K„ \R\2 r" (2) 

Using properties of the Gamma function and T\ — J = K2
 gives the special cases 

K^ =2, K2 = n, K3 - —, and K4 = — 

It is well known4 that the PDF of the Euclidean distance of the kth closest clutter point to the 
origin (or any fixed point) is 

A 

Pk(r) 

m\KmA\R\2 

ß-V! 
— rkm~l exp 

i     > 

-KmA\R\2r" 



Only the PDF of the closest clutter point is needed in this application, and this is the case k = 1; 
explicitly, 

p:{r) = mkj\4r-1 exp(-KmA\4rm). 

The PDF of the squared distance of the closest clutter point is, therefore, 

p{u) = — KmA\R\2u2   exp(-KmA\R\2u2), (3) 

where u~r2. The moments ofpfu) are 

2v 

uv =       uvp(u) du ■ AS+i)  _r&+i) 
2v 

owo1 71 

A^ + l) 

A\RV 
v = 0,1,2. , *,—,..., 

1      m 

as is seen via the change of variables £ = K„ A \ R\2 u2. In particular, 

u — _m+T) 
n 

A\W 
(4) 

is the mean-squared distance of the closest clutter point to the origin. 

A total of T > 1 successive independent measurement scans are given. Let rt denote the 
normalized distance (equation (1)) of the closest clutter measurement to the origin at time t. 
Under the null hypothesis "&', the squared distances ut - r2 are independent, so it follows that the 
total innovation statistic 

S*'=Z  r/ = Z u" (5) 
t=\ t=i 

has mean and variance 

S„. = Tu and var{S„) = T2 u2 -(uf~l (6) 

The statistic S9. is independent of the target initialization because Poisson clutter is spatially 

homogeneous in the measurement space, Rm. The PDF of the statistic (equation (5)) will be 

denoted by ps(s    KmA\R\2,7, ■#'). No explicit form for this PDF is available except for m = 2; 



however, the appendix shows that useful thresholds for hypothesis testing purposes are readily 
obtained for all m. 

Let R" denote the target state space. A target initialization comprises a sequence of target 

states of length T, denoted Xinitial =(xi™t,al,--,x'T"
itial), where each state xftial GR"   Position- 

keeping (PK) track initialization is assumed; i.e., 

x^d=Ft{xTtial),t = \,...,T-l. (7) 

PK initialization is thus fully characterized by the first point x'""2" . Additive Gaussian noise 
models are assumed for the given nonlinear target measurement process; hence, the target 
measurement process is modeled by 

zt=Ht(xr) + wt, (8) 

where the additive noises {w,} are independent and identically distributed with covariance matrix 

R and \xt "e j denotes the actual (but unknown) target states. Under hypothesis 1C', the correct 
target measurement is known—only the initialization is erroneous. Hence, the measurement error 

conditioned on the initialization Ximtta is given by 

et=zt-Ht(xral) 
=Z[-Ht(xr)+Ht(xr)-Ht(xr') 
^w^H^D-HXx'r1)- 

The errors {e,} are Gaussian distributed with mean vector Ht{xlt
ruej-Ht\x'",t'alj and covariance 

matrix R. The statistic 

Sv = Z {zt-Ht(x-r1))   R-\zt-Ht(xT1)) (9) 
i=i 

is distributed ZI,T(^) - Z^ri' 1^) > that is, noncentral chi-squared with mT degrees of freedom and 
noncentrality parameter 

8=j:{H{xr)-H{xrai))R^H{xr)-H{xftiai)). oo) 

This result follows easily from Muirhead (Theorems 1.3.4 and 1.4.1).5 The noncentrality 
parameter is the total squared initialization error. The mean and variance of Sx, are (see 

Muirhead, page 24)5 



SK. =mT+ö andvar(SK,) = 2mT+4ö. (11) 

Because of PK initialization, the statistic Sz, is conditioned solely on the first point x\m a of 
yinitial 

If measurement process is linear, so that Ht (x) = Htx for all x, then the total squared 

initialization error can be written in the form 

S = £l(F,(xr)-Ft(xr')) (#r)V Ht(Ft(xr)-Ft(xT')). (12) 

Further, if the target process is linear, so that Ft{x) = Ftx for all x, then 

Ö-- = A' WA, 

where 

A = x rue           initial (13) 

is the track initialization error vector at time t=\, and the matrix W\s given by 

f t-\     \ (i-\    \ 

(=i   Vy=o     J V;=o     J 

where F0is the n x n identity matrix. If the target process is stationary also, so that Ft(x) -Fx 

for all t, then W simplifies further to 

i=i 

Further simplification of Wseems possible only in special cases. The matrix W\s clearly positive 

semidefinite, as is evident from equation (12). In many practical problems, F and {Ht} are such 
that Wxs positive definite; however, no general condition for the positive definiteness of Wis 
presented here. 

Let the significance level a for rejecting the hypothesis "Tf' be specified. If the normalized 

clutter density is such that 2\R\2 < AcriticJR\2, where Acritical is defined in section 3, then the 

quantity sa(KmA\RV,T) satisfying the equation 



\-a 
CO I 

J       ps(t    Kj\F\\T,W)d$, (15) 

defines the threshold at significance level a for rejecting W' in a traditional lower-tail significance 
i 

test. The threshold sa(K mA\R\* ,T) depends on a, the normalized clutter density, and the number 

of scans T contributing to the innovation statistic. It follows by the change of variables 

g = \KmA\R\i     7] that 

r 
sa(KmX\R\\T)= KmZ\R\2 

\ J 

\\ 
-2 

,(T) (16) 

where the standardized threshold sa(T) is defined by 

1-«=   J   P,(l\l T,V')d7,. (17) 
'«(T) 

Computation of the standardized threshold sa(^T) is discussed in the appendix, where several 
tables are also given. 

The initialization sensitivity region of significance a, denoted lR'(a), is defined by 

constraining the mean of the innovation statistic under "K' to be less than or equal to the threshold 
I 

sa (jcmA\R\z, T). The mean is the noncentrality parameter (equation (10)), so the region £"(a) is 

given by the quadratic inequality 

%'(a) = AeRn:A'WA < 

-2 

(                  '>» 
«AW ^(T) 

\                 ) (18) 

where the identity (equation (16)) is substituted in equation (18). If PF"is positive definite, the 
significance region "R'{a) is a nondegenerate ellipsoid in the target state space, R". If Wis not 
positive definite, the significance region has infinite extent in directions corresponding to the 
eigenvectors of the zero eigenvalues of W. Track initialization in the significance region 1R'[a) 

guarantees that the mean of Sz, does not exceed the significance level a, assuming PK track 

initialization. Intuitively, initializing in g'(a) guarantees that at most a percent of all potential 

tracks generated by the NNAF in clutter are "track-like" in comparison with real tracks. 



'   A more conservative initialization region is defined by specifying an additional significance 
level on the alternative hypothesis X'. Let ß denote the lower-tail significance level for the 
statistic Sv, that is, 1 - ß is the probability of rejecting "K'. The initialization sensitivity region at 

the operating point (a,ß), denoted %'(a,ß), is defined by 

&(a,ß) = AeR":      J      zlAt \ * WA) d%< l-ß 
s« «mMR\2.T 

(19) 

For every probability a there exists a probability ß0 such that 

&(a,ß) c Z'(a), for all ß<ß0, 

that is, the initialization region &(a,ß0) is smaller than the region £"(a) for all ß<ß0. A 

rough approximation is %'(a) ~ £"l a, 

The ROC curve for 1¥' and X' is the locus of the point 

\p,(£ | Z\F\*.T,V')dS, J zlAt | ^^ (20) 

as s ranges from zero to infinity. The integrals range over the interval (0, s) instead of the more 
typical interval (s,<x>) because both hypothesis tests are lower-tail tests. The ROC curves 
(equation (20)) are functions of clutter density, initialization error, and T, so they are actually non- 
planar surfaces and, hence, difficult to visualize. 

Insightful planar curves are obtained in the following manner: set the operating point (cc,ß) 
and, for every threshold s, define 

Sr(s) = max\S:ß  < }X
2

mT^\S)dA, (21) 

X(s)\R^max\x\R^:a <]ps(Z \ W ,T,-»')dA (22) 

It can be verified that the equation defining the set in equation (21) has a unique solution for each 
5 > s(ß), where s(ß) is the /? percent point of the (central) chi-square distribution, i.e., 
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iß) 

ß= \xlAt\WZ- (23) 

For s < s(ß), the set in equation (21) is empty because no solution to the defining equation exists. 

The curve (TJö"(S),A*(S)\R\2) defined parametrically as s ranges from-sf/?) to infinity is called the 

ICE curve, and it depends only on the number of scans T. ICE curves are useful in approxi- 
mating the maximum density clutter in which targets can be successfully tracked. Knowledge of 
the sensor signal processor and clutter density determines target signal-to-noise ratio (SNR), so 
maximum clutter density estimates are equivalent to minimum target SNR estimates. 

3. CRITICAL CLUTTER DENSITY 

As discussed in section 2, critical clutter density occurs when the first moments of the 
statistics Sv and Sx are equal. Using the hypotheses ^' and "K' and equating the mean values of 

the statistics S#, and Sx. gives 

Sv, = Tu = mT+S = S^> (24) 

Solving for the total squared initialization error ogives the fundamental equation relating clutter 
density and track initialization error, namely, 

8 = T(u-mj=Tp(X)>0, (25) 

where 

p(A) = 

2 

ti+i) tf + 1) 
m 

m 
TV . w (26) 

The clutter density parameter A appears only on the right-hand side of the equation. Solving the 

inequality P\A) ^ 0 for A gives 

A<A critical 

\R\2 

ni+i)~ 
Tim (27) 

11 



The critical clutter density is a function only of the measurement dimension and the determinant of 
the covariance matrix of the additive Gaussian noise. The normalized critical clutter density, 

I 
/lcn.ft.M/|Z?|2 depends only on the measurement dimension, a fact that is intuitively satisfying. 

The critical clutter density is independent of the number of scans T, as might be anticipated 
from the problem formulation. More importantly, it also holds for general nonlinear target and 

measurement models. Different target and measurement process models (i.e., the functions \Ft) 

and {Ht}) yield the same critical clutter density. This is not to say, however, that different 

models track equally well in the same density clutter. 

The critical clutter density is defined via an extreme circumstance, namely when the means of 
two PDFs are equal. As such, the critical density should be interpreted as an upper bound at 
which a strictly kinematic tracking algorithm can be expected to operate. Such a performance 
limit provides a quantitative standard of comparison for alternative tracking algorithms in clutter. 
For example, a tracker that functions reliably at normalized clutter densities up to 10 percent of 

i 

^ riticailCensor \V ls probably better than one that functions only up to 1 percent of 

A-critical Rsemor 212 • Tne utility of the normalized clutter density as a standard comparison measure 
deserves further examination in practical problems. 

Particular values of the normalized critical density are, using equation (27), 

" critical I 4l'  2n    \%n Hi 
3 

'• it <28> 
for measurement vector dimensions m = 1, 2, 3, and 4, respectively. Using Stirling's 
approximation to the Gamma function and the curious limit 

lim(r(l + A)m = e~r = 0.561459, (29) 

where y = 0.577216 is Euler's constant, gives the asymptotic result 

e r yjmn: 
^anneal\W= j-, as m-> co. 

(2m)2 

12 



It follows from equation (30) that 

lim 
X 

X 
critical m 

critical   m+1 

J2ne= 4.1327. (31) 

Evidently, the critical clutter density decreases with increasing measurement dimension m by a 
factor of about four for additional components of the measurement vector. As shown by the 
tabular data below, these limiting values are approached rather slowly. 

m 

1 
2 
3 
4 
5 

10 
15 
20 
25 

100 

1000 

1 

^critical R\2 
critical \ m 

i 

/L critical 1 -"M    / 

e y 4~mn 
Ä             1 critical \ m+\ m 

{2m)2 

0.70711 4.4429 2.9365 
0.15916 4.0387 1.9315 
0.39407 (-1) 3.9617 1.6137 
0.99472 (-2) 3.9472 1.4549 
0.25201 (-2) 3.9504 1.3653 

0.25589 (-5) 3.9965 1.1817 
0.24660 (-8) 4.0287 1.1210 
0.22981 (-11) 4.0492 1.0907 
0.20958 (-14) 4.0631 1.0725 

0.24098 (-60) 4.1130 1.0181 

0.18260 (-614) 4.1307 1.0018 
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4. EXAMPLE: CONSTANT VELOCITY TARGET 

The example is uses a constant velocity target model with two dimensional measurements. 
For ease of exposition, measurement vector components are referred to as position coordinates. 
Measurement scans are available at fixed sampling intervals of r > 0.   The units of time and 
position (e.g., seconds and meters) are irrelevant because standardized error coordinates 
(described below) are used throughout. Extension to constant acceleration target models is 
straightforward and not pursued in this report. 

In the example m = 2,n = 4, and the constant velocity motion model is 

F- 

1 T 0 0" 

0 

0 

1 

0 

0 

1 

0 

r 
,H = 

0 0 0 1_ 

10   0   0" 
, and R = 

'a2 o" 
0  o  i  oj 0 G] 

(32) 

The target state components are position x and velocity x. From the definition (equation (14)), 
Wis a 4x4 block diagonal matrix with the 2x2 diagonal blocks 

yyd 2 a 

T ±TT(T-1) 

TT(T-\)   WT(T-\)(2T-\) 
(33) 

Wd is singular for T = 0 because, in this case, the matrix F models a motionless target. For 
T > 0, the matrix Wd is singular for 7= 1 because velocity is unobservable from a single position 
measurement. For the remainder of this section, it is assumed that r > 0 and T>2. Let 
(x,x,y,y) denote the (transposed) target state vector. Standardized error coordinates for 

position and velocity are 

Ax    TAX    Ay    xAy 
> i t 

o      a      a      c 

i /" A A-      A A-\       (    true       „initial     s-ttue        -11111131     ..true initial     -•I
true        •initial \      TI._ Ul«^«1>- where (Ax, Ax, Ay, Ay) = (x,    -x]     , x,    -x,     , j/,    -j>,     , y1    -yx     ).   The block 

structure of JFand the explicit form (equation (33)) gives the initialization region 

*'(a) = 

fAx^ 

a 
Ax 

w° 

^Ax~\ 

a 
Ax 

+ 

r4y) 
a 
Ay 

W a 
Ay (34) 

where the standardized matrix W° is defined by 

15 



w° = 
T \T(T-\) 

■T(T-\)   ±T(T-\)(2T-\) 

Because the x and .y coordinates separate in (34), the initialization region in this case is most easily 

studied by supposing no initialization error in one component. The eigenvalues of W° are 

r± = i+l(r-i)(2r-i)±^(i+i(r-i)(2r-i))2-|(r2-i) 

[i+i(r-i)(2r-i)±Vi+i(r-i)(r-2)+i(r-i)2(2r-i)2]. 
(35) 

For T > 2, it is easily seen from these forms that the eigenvalues are distinct and positive. 

Consequently, W°, Wd ,and W are positive definite. 

The positive branch of the square root in equation (35) gives the larger of the two 
eigenvalues. The lengths of the major and minor axes of the elliptical track initialization region 
%' in standardized error coordinates, are proportional to the square roots of the smallest and 

largest eigenvalues, respectively, of W°. Thus, the eccentricity of the ellipse is 

eccentricity = 
major axis length 

minor axis length 
--   — 

For T=2, 5, 10, 15, 20, and 25, the eccentricity rounded to the nearest integer is 3, 5, 10, 16, 22, 
and 27, respectively. Asymptotically, 

r+ =LsT
3 +O(T

2
) and y.=\T+o(\), as r-»«, (36) 

so that 

eccentricity - J- T+ o(l), as T —> oo. 

The initialization region eccentricity therefore increases linearly with Tfor large T. 

The eigenvectors of W corresponding to y± are given by 

(37) 

r ^\ 
e+ = 

4\ + b2
± U, 

(38) 
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where 

&=■ 

T-Ü 
■\ + UT-l)(2T-l)±j\ + ±(T-l)(T-2) + jE(T-l)2(2T-\)2 (39) 

The angle between the positive standardized position axis and the eigenvector e_ corresponding 

to major axis of W is V = tan\b_]. For T= 2, 5, 10, 15, 20, and 25, y is -58°, -19°, -9°, -6°, 

-4°, and -3.5°, respectively. It is easily verified that b_ < 0 for T > 2, so y/ must be negative. 

Asymptotically, 

¥ = £-<{-F). <*?->">. (4°) 

For sufficiently large T, the angular "tilt" of the initialization region diminishes linearly with 
increasing T. The negative correlation between normalized position and velocity errors accords 
well with intuition. 

The half-lengths L+ and L_ of the major and minor axes, respectively, of the region are 

functions of clutter density and significance level a. Explicitly, 

4V*H* ■ (41) 

where the standardized threshold sa(T) is tabulated in the appendix. From equation (28), the 

critical clutter density for two-dimensional measurements is —, so a normalized clutter density 
2K 

representative of moderate to heavy clutter is 

x- ,     10"1 

A\R\
2
 = ACJ

2
=- 

2n 

For T=2,5, 10, 15, 20, and 25 and for a 1-percent significance level (i.e., a = 0.01), the major 
axis half-lengths are 

L+ = 2.789, 4.140, 5.409, 6.044, 6.434, and 6.704, 

respectively; the minor axis half-lengths are 

L_ = 1.065, 0.8737, 0.5317, 0.3818, 0.2986, and 0.2457, 

respectively. These half-lengths assume no error in one component. For errors in both x andy 
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components, a more appropriate "average" initialization region is obtained by dividing these half- 

lengths by V2 , assuming equal error contributions in each component. 

Figure 1 shows the initialization region %'(a) corresponding to 1-percent significance levels, 

respectively, for rejecting clutter for several choices of batch length T. The relative sizes of the 
major and minor axes of lR'(a), as well as the orientation angle y, agree with the results given 

above. 

It is evident from figure 1 that, as T increases, track initialization error in standardized 
coordinates is more sensitive to initial velocity errors than to initial position errors. This trend 
confirms the asymptotic formulae given above. It follows that the allowable error in Ax (and in 
Ay) is inversely proportional to the sample interval T. 

ICE curves are described in section 2 as a way to quantify the following intuitively reasonable 
statement: increasing the normalized clutter density requires progressively better track 
initialization to maintain a fixed significance level for rejecting clutter. However, ICE curves are 
not presented here. 

TAX 

a 

. 
T = 

T = 3 
= 2 X"""«v 

1 

• 
T = 

T=10 

T = 4   f~ 

■ 
T 

T = 20j £6C   - z  ^  ■: 

o T = 25 

• 

r"' 

■ 

,     ,     ,     , ,   ,: 

Ax 

Figure 1. Initialization Error Regions for Significance Level a = 0.01 



5. CONCLUSIONS AND RECOMMENDATIONS 

Further study of several topics is recommended. The utility of families of ICE curves as a 
means of quantifying the maximum clutter density in which target tracking can be reliably 
performed merits further study. The development of initialization error regions for constant 
acceleration target models also merits further study. The correct hypotheses ■# and "K remain to 
be investigated. Finally, when non-kinematic information is exploited by the assignment function, 
the approach of this report is inadequate and must be reformulated. The best way to approach 
this topic depends on the application and the nature of the non-kinematic data used. 

The approach developed is applicable to any filtering problem in which initialization in clutter 
is potentially a problem. The example presented suggests that this formulation provides a 
reasonable and useful method to assess the relative sensitivity of different state variables to 
initialization in clutter. 
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APPENDIX 
COMPUTATION OF SIGNIFICANCE THRESHOLDS UNDER flf- 

The standardized threshold sa(T) is defined by equations (16) and (17). For m = 2, it is 

easily shown that 

PsH^T^y-^^e^ (A-l) 

so that the cumulative function is, in this case, the incomplete Gamma function (see Abramowitz 
and Stegun, equation (6.5.1)).6 Algorithms for computing the incomplete Gamma function are 
widely available (e.g., in Mathematical so computing the threshold is simply a matter of solving 
the nonlinear equation (17). In Mathematica, Newton-Raphson's iteration for the solution is the 
following one line expression: 

FindRoot[GammaRegularized[T,s]=l-alpha,{s,sO}], (A-2) 

where 50 is an initial guess at the solution, and GammaRegularized[ ] is an intrinsic Mathematica 
function that equals one minus the incomplete Gamma function. The algorithm (equation (A-2)) 
is insensitive to the choice of initial point sO. 

For m * 21 the required PDF is not available in closed form, so computing the thresholds 

sa(T) accurately requires numerically evaluating the characteristic function f{4) of p{u) and 

integrating [/(£)] . For full details, see Nuttall.7 For the present purposes, however, 
approximate thresholds are easily computed by simulation using the following procedure. The 

exceedance of p(u) for KmAW -1 is, from equation (3), 

E(y) = | ^ u2   expl -u2 \du = exp 

Its inverse function is 

2 
-V (A-3) 

J 

v = (rlnE)m. (A-4) 

Hence, if £ is uniformly distributed on the interval (0,1), then v is distributed according to p(u). 
Consequently, the sum 

T 

5 = 2>, (A-5) 

A-l 



is distributed Ps{ I1. T,^'J 5 provided each term v, is computed via equation (A-4). Samples 

{^}^=i of the sum (equation (A-5)) are generated using equation (A-4) and a pseudo-random 
number generator and sorted so that s(1) < s{2) <■■■< j(Af)> where s{n) denotes the «th-order 

statistic. The lower-tail significance point sa(T) is estimated as 

*.m- \[aN])> (A-6) 

where [ccN] in equation (A-6) denotes the greatest integer less than or equal to aN. Sample size 

N strongly affects the accuracy of the estimates (equation (A-6)), especially for small a. For 
sufficiently small values of a, the methods of reference 7 are recommended over simulation. 

The tables below for m * 2 are compiled using N= 10,000 samples. These thresholds are 
probably accurate to about two digits. For m = 2, the numerical procedure described above is 
used to obtain thresholds that are rounded to the precision shown in tables A-l and A-2. 

Table A-l. Standardized Thresholds sa(T) form = l and m = 2. 

m = 1 m = 2 (exact) 

T a = 0.1 a = 0.01 «=0.001 a=0.l « = 0.01 « = 0.001 

1 0.989(-2) 0.897(-4) 0.660(-6) 0.1054 0.1005(-1) 0.1001 (-2) 

2 0.190 0.130(-1) 0.154(-2) 0.5318 0.1486 0.4540(-l) 

3 0.579 0.967(-l) 0.251(-1) 1.102 0.4360 0.1905 

4 1.15 0.233 0.590(-l) 1.745 0.8232 0.4286 

5 1.83 0.490 0.149 2.433 1.279 0.7394 

6 2.60 0.906 0.374 3.152 1.785 1.107 

7 3.58 1.27 0.505 3.895 2.330 1.520 

8 4.50 1.69 0.702 4.656 2.906 1.971 

9 5.50 2.15 1.08 5.432 3.507 2.452 

10 6.46 2.85 1.56 6.221 4.130 2.961 

15 12.3 3.83 3.83 10.30 7.477 5.794 

20 18.8 6.96 6.96 14.53 11.08 8.958 

25 25.8 10.7 10.7 18.84 14.85 12.34 

A-2 



Table A-2. Standardized Thresholds sa (T) form = 3 and m=4 

m = 3 m = 4 

T a=0.1 a=0.01 a =0.001 a=0.1 a=0.01 a= 0.001 

1 0.227 0.519(-1) 0.119(-1) 0.325 0.101 0.412(-1) 

2 0.795 0.324 0.142 0.9758 0.505 0.248 

3 1.459 0.763 0.463 1.64 1.04 0.689 

4 2.12 1.20 0.802 2.37 1.60 1.14 

5 2.81 1.81 1.25 3.16 2.27 1.73 

6 3.56 2.40 1.88 3.87 2.90 2.32 

7 4.35 3.05 2.35 4.64 3.54 2.87 

8 5.07 3.77 2.84 5.46 4.21 3.46 

9 5.81 4.35 3.35 6.20 4.99 4.05 

10 6.61 4.99 4.04 7.01 5.73 4.72 

15 10.6 8.60 7.27 11.1 9.31 8.15 

20 14.7 12.1 10.8 15.5 13.2 11.9 

25 18.7 15.8 14.1 19.2 16.9 15.6 
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